[1]
O. Aljaloudi, M. Thiam, M. Qader, M. K. S. Al-Mhdawi, A. Qazi, and N. Dacre, “Examining the Integration of Generative AI Models for Improved Risk Management Practices in the Financial Sector,” Nov. 2024.
[2]
G. Babaei and P. Giudici, “GPT classifications, with application to credit lending,” Machine Learning with Applications, vol. 16, p. 100534, Jun. 2024, doi: 10.1016/j.mlwa.2024.100534.
[3]
G. Bhatia, E. M. B. Nagoudi, H. Cavusoglu, and M. Abdul-Mageed, “FinTral: A Family of GPT-4 Level Multimodal Financial Large Language Models,” Jun. 14, 2024, arXiv: arXiv:2402.10986. doi: 10.48550/arXiv.2402.10986.
[4]
O. Campesato, Python 3 and Machine Learning Using ChatGPT/GPT-4. Walter de Gruyter GmbH & Co KG, 2024.
[5]
A. P. Desai, G. S. Mallya, M. Luqman, T. Ravi, N. Kota, and P. Yadav, “Opportunities and Challenges of Generative-AI in Finance,” Nov. 22, 2024, arXiv: arXiv:2410.15653. doi: 10.48550/arXiv.2410.15653.
[6]
A. P. Desai, G. S. Mallya, M. Luqman, T. Ravi, N. Kota, and P. Yadav, “Opportunities and Challenges of Generative-AI in Finance,” Nov. 22, 2024, arXiv: arXiv:2410.15653. doi: 10.48550/arXiv.2410.15653.
[7]
A. P. Desai, G. S. Mallya, M. Luqman, T. Ravi, N. Kota, and P. Yadav, “Opportunities and Challenges of Generative-AI in Finance,” Nov. 22, 2024, arXiv: arXiv:2410.15653. doi: 10.48550/arXiv.2410.15653.
[8]
N. Dulam, V. Gosukonda, and M. Ankam, “GPT-4 and Beyond: The Role of Generative AI in Data Engineering,” Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, Art. no. 1, Feb. 2024.
[9]
B. Fazlija, M. Ibraimi, A. Forouzandeh, and A. Fazlija, “Implementing Financial Regulations Using Large Language Models,” Nov. 05, 2024, Social Science Research Network, Rochester, NY: 5010694. Accessed: Dec. 19, 2024. [Online]. Available: https://papers.ssrn.com/abstract=5010694
[10]
A. Hinterleitner, T. Bartz-Beielstein, R. Schulz, S. Spengler, T. Winter, and C. Leitenmeier, “Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution,” Sep. 25, 2024, arXiv: arXiv:2409.16787. doi: 10.48550/arXiv.2409.16787.
[11]
M. Hofert, “Assessing ChatGPT’s Proficiency in Quantitative Risk Management,” Risks, vol. 11, no. 9, Art. no. 9, Sep. 2023, doi: 10.3390/risks11090166.
[12]
J. P. Inala et al., “Data Analysis in the Era of Generative AI,” Sep. 27, 2024, arXiv: arXiv:2409.18475. doi: 10.48550/arXiv.2409.18475.
[13]
C. Jeong, “Fine-tuning and Utilization Methods of Domain-specific LLMs,” jiis, vol. 30, no. 1, pp. 93–120, Mar. 2024, doi: 10.13088/jiis.2024.30.1.093.
[14]
D. P. Jeong, Z. C. Lipton, and P. Ravikumar, “LLM-Select: Feature Selection with Large Language Models,” Jul. 02, 2024, arXiv: arXiv:2407.02694. doi: 10.48550/arXiv.2407.02694.
[15]
S. Jomthanachai, W. P. Wong, and K. W. Khaw, “An application of machine learning regression to feature selection: a study of logistics performance and economic attribute,” Neural Comput & Applic, vol. 34, no. 18, pp. 15781–15805, Sep. 2022, doi: 10.1007/s00521-022-07266-6.
[16]
M. Khoja, “AI and Bond Values: How Large Language Models Predict Default Signals,” Sep. 20, 2024, Social Science Research Network, Rochester, NY: 4965227. doi: 10.2139/ssrn.4965227.
[17]
J. Lee, N. Stevens, S. C. Han, and M. Song, “A Survey of Large Language Models in Finance (FinLLMs),” Feb. 04, 2024, arXiv: arXiv:2402.02315. doi: 10.48550/arXiv.2402.02315.
[18]
D. Li, Z. Tan, and H. Liu, “Exploring Large Language Models for Feature Selection: A Data-centric Perspective,” Oct. 23, 2024, arXiv: arXiv:2408.12025. doi: 10.48550/arXiv.2408.12025.
[19]
N. Li, C. Gao, M. Li, Y. Li, and Q. Liao, “EconAgent: Large Language Model-Empowered Agents for Simulating Macroeconomic Activities,” in Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), L.-W. Ku, A. Martins, and V. Srikumar, Eds., Bangkok, Thailand: Association for Computational Linguistics, Aug. 2024, pp. 15523–15536. doi: 10.18653/v1/2024.acl-long.829.
[20]
N. Li, C. Gao, Y. Li, and Q. Liao, “Large Language Model-Empowered Agents for Simulating Macroeconomic Activities,” Oct. 13, 2023, Social Science Research Network, Rochester, NY: 4606937. doi: 10.2139/ssrn.4606937.
[21]
J. Ludwig, S. Mullainathan, and A. Rambachan, “Large Language Models: An Applied Econometric Framework,” Dec. 09, 2024, arXiv: arXiv:2412.07031. doi: 10.48550/arXiv.2412.07031.
[22]
N. Nascimento, C. Tavares, P. Alencar, and D. Cowan, “GPT in Data Science: A Practical Exploration of Model Selection,” in 2023 IEEE International Conference on Big Data (BigData), Dec. 2023, pp. 4325–4334. doi: 10.1109/BigData59044.2023.10386503.
[23]
M. Sanz-Guerrero and J. Arroyo, “Credit Risk Meets Large Language Models: Building a Risk Indicator from Loan Descriptions in P2P Lending,” Aug. 05, 2024, arXiv: arXiv:2401.16458. doi: 10.48550/arXiv.2401.16458.
[24]
E. Sharkey and P. Treleaven, “BERT vs GPT for financial engineering,” Apr. 24, 2024, arXiv: arXiv:2405.12990. doi: 10.48550/arXiv.2405.12990.
[25]
A. C. Teixeira, V. Marar, H. Yazdanpanah, A. Pezente, and M. Ghassemi, “Enhancing Credit Risk Reports Generation using LLMs: An Integration of Bayesian Networks and Labeled Guide Prompting,” in Proceedings of the Fourth ACM International Conference on AI in Finance, in ICAIF ’23. New York, NY, USA: Association for Computing Machinery, Nov. 2023, pp. 340–348. doi: 10.1145/3604237.3626902.
[26]
Y. Wang, J. Zhao, and Y. Lawryshyn, “GPT-Signal: Generative AI for Semi-automated Feature Engineering in the Alpha Research Process,” Oct. 24, 2024, arXiv: arXiv:2410.18448. doi: 10.48550/arXiv.2410.18448.
[27]
“Generative-AI in Finance : Opportunities and Challenges † - Google Search.” Accessed: Dec. 21, 2024. [Online]. Available: https://www.google.com/search?client=ubuntu-sn&channel=fs&q=Generative-AI+in+Finance+%3A+Opportunities+and+Challenges+%E2%80%A0
[28]
“GPT-4 and Beyond: The Role of Generative AI in Data Engineering | Journal of Bioinformatics and Artificial Intelligence.” Accessed: Dec. 21, 2024. [Online]. Available: https://biotechjournal.org/index.php/jbai/article/view/142
[29]
“How to Train Generative AI Using Your Company’s Data.” Accessed: Dec. 21, 2024. [Online]. Available: https://hbr.org/2023/07/how-to-train-generative-ai-using-your-companys-data
[30]
“Proprietary data, your competitive edge in generative AI | IBM.” Accessed: Dec. 21, 2024. [Online]. Available: https://www.ibm.com/think/insights/proprietary-data-gen-ai-competitive-edge